Greenhouse gas emissions dynamics in response to organic matter loading rates in a created freshwater wetland in southeastern Virginia

R. Scott Winton Curtis J. Richardson Duke University Wetland Center, Durham, NC

James Perry Virginia Institute of Marine Science, Gloucester Point, VA

Lee Daniels Virginia Tech University, Blacksburg, VA

Presentation Outline

- 1. Background on mitigation wetlands
- 2. Site description and research questions
- 3. Results and discussion
- 4. Methodological postscript

Wetland restoration policies and programs

- Clean Water Act Section 404
 1977
- "No Net Loss"
 - 1989
- Wetlands Reserve Program

- \$2.1 Billion 1992-2007 (Ferris and Siikamäki, 2009)

In 2005, the state rebuilt a section of Little Beaver Creek southwest of Apex as part of a \$1.5 million stream restoration. Remnants of a tropical storm in 2006 caused major damage, prompting a planned \$323,000 repair.

Typical wetland creation problems in Southeastern Virginia

- Soil compaction
- Low Soil Organic Matter

Solution: Organic matter amendments

(Whittecar and Daniels, 1999)

Charles City County Wetland

Constructed: 1998 Organic Matter Amendment:2002 Tree Planting: 2004

(Daniels et al. 2005)

Bailey et al. 2007 ; Bruland et al 2009

Research Questions

- What is the fate of the organic matter that has been added to the Charles City County Wetland?
 - What effect do the different loading rates have of on biogenic trace gas emissions?

Total soil C top 10 cm

2005 data from Bailey et al 2007

Gas data summary

		successful CH4
date	no. incubations	incubations
9/2/2011	5	5
9/26/2011	15	3
10/21/2011	20	9
2/22/2012	27	8
5/7/2012	20	20

Other studies report 41 to 55 percent of methane incubations linear (Morse et al 2012; Nahlik and Mitsch 2010)

Results

- Plot CO₂ and CH₄ flux against:
 - OM treatment
 - Total soil C
- Model flux using other variables:
 T
 - Soil Moisture
- Look at GWP by OM treatment

CO₂ flux as a function of OM loading rate (May 2012)

CO₂ flux as a function of soil C (May)

CO₂ Model: log CO₂ flux ~ Soil C + soil moisture + soil T (with interactions)

- Multiple r-squared: .80
- Adjusted r-squared: .67
 - Soil C
 - SVWC
 - Soil T
 - Soil C * SVWC
 - Soil C * Soil T
 - SVWC * Soil T
 - Soil C * SVWC * Soil T 0.00214 **

(p-values) 0.00194 ** 0.01166 * 0.01148 * 0.00201 ** 0.00205 ** 0.01185 *

Methane flux as a function of OM loading rate

Methane flux as a function of soil C

Methane flux as a function of soil C

CH₄ Model?

 Soil Moisture and T are not significant predictors of CH₄ flux

Global Warming Potential by treatment

Global Warming Potential by treatment

A threshold?

• Bruland et al. (2009)

Loading Rate (Mg ha-1)

 Bailey et al. (2005) studied vegetation dynamics and reported: "...112 Mg ha⁻¹ provided the maximum benefit..."

Conclusions

- CO₂ flux correlated with total soil C
 dominates GWP
- N₂O flux rates below detection for 78% of samples
- CH₄ flux anti-correlated with soil C, but relationship weak
 - Bioavailability of C?
 - Soil Texture?
 - Tree roots?
- GWP minimum at intermediate SOM load?

Gas data summary

		successful CH4
date	no. incubations	incubations
9/2/2011	5	5
9/26/2011	15	3
10/21/2011	20	9
2/22/2012	27	8
5/7/2012	20	20
5/7/2012	20	20

Other studies report 41 to 55 percent of methane incubations linear (Morse et al 2012; Nahlik and Mitsch 2010)

Good Curves

Bad Curves

Elevated t0

Acknowledgements

- The Peterson Family Foundation
- The DU Wetland Center staff
 - Curt Richardson, Neal Flanagan, Hongjun Wang, Jonathon Bills, Wes Willis, Wyatt Hartman
- The Bernhardt Lab
 - Emily Bernhardt, Ashley Helton, Medora Burke-Scoll, Anna Fedders, Ben Coleman
- Virginia Department of Transportation
- And
 - Dan Richter, Allan Bacon, Heide Winner, Eugene Yacobson, Mary Susan Sherman, Scott Sashy, Elizabeth Norment, Darmawan Prasadjo

CH₄ flux from freshwater wetlands

.

Source	ecosystem	Location	CH ₄ flux (kg ha ⁻¹ yr ⁻¹)
This study	created WL	Virginia	31.5 to 131
Mander et al. (2008)	constructed WL	Estonia	6.81 to 204
Hendriks et al. (2007)	restored peatland	Netherlands	145 to 689
Altor and Mitsch (2006)	created riparian marsh	Ohio	307 to 934
Morse et al. (2012)	restored WL	North Carolina	0.7 to 197
This study	created WL	Virginia	-3 to 1816
Sovik and Klove (2007)	constructed WL	Norway	-5.84 to 9250
Gleason et al. (2009)	restored wet meadow	North Dakota	-6.18 to 1080

Methane flux as a function of OM loading rate (all data)

Elevation by OM treatments

